Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps.

نویسندگان

  • Gil Marom
  • Mor Peleg
  • Rotem Halevi
  • Moshe Rosenfeld
  • Ehud Raanani
  • Ashraf Hamdan
  • Rami Haj-Ali
چکیده

Native aortic valve cusps are composed of collagen fibers embedded in their layers. Each valve cusp has its own distinctive fiber alignment with varying orientations and sizes of its fiber bundles. However, prior mechanical behavior models have not been able to account for the valve-specific collagen fiber networks (CFN) or for their differences between the cusps. This study investigates the influence of this asymmetry on the hemodynamics by employing two fully coupled fluid-structure interaction (FSI) models, one with asymmetric-mapped CFN from measurements of porcine valve and the other with simplified-symmetric CFN. The FSI models are based on coupled structural and fluid dynamic solvers. The partitioned solver has nonconformal meshes and the flow is modeled by employing the Eulerian approach. The collagen in the CFNs, the surrounding elastin matrix, and the aortic sinus tissues have hyperelastic mechanical behavior. The coaptation is modeled with a master-slave contact algorithm. A full cardiac cycle is simulated by imposing the same physiological blood pressure at the upstream and downstream boundaries for both models. The mapped case showed highly asymmetric valve kinematics and hemodynamics even though there were only small differences between the opening areas and cardiac outputs of the two cases. The regions with a less dense fiber network are more prone to damage since they are subjected to higher principal stress in the tissues and a higher level of flow shear stress. This asymmetric flow leeward of the valve might damage not only the valve itself but also the ascending aorta.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality.

The cusps of native aortic valve (AV) are composed of collagen bundles embedded in soft tissue, creating a heterogenic tissue with asymmetric alignment in each cusp. This study compares native collagen fiber networks (CFNs) with a goal to better understand their influence on stress distribution and valve kinematics. Images of CFNs from five porcine tricuspid AVs are analyzed and fluid-structure...

متن کامل

Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp--Part I: Experimental results.

To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV's small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure-strain relationship to assess the effects of bound...

متن کامل

Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss.

Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mech...

متن کامل

Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships.

Clinical usage of bioprosthetic heart valves (BPHVs) fabricated from glutaraldehyde-pretreated porcine aortic valves is restricted due to calcification-related failure. We previously reported a highly efficacious ethanol pretreatment of BPHVs for the prevention of cuspal calcification. The aim of the present study is to extend our understanding of the material changes brought about by ethanol a...

متن کامل

Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen.

Heart valve replacements composed of living tissue that can adapt, repair, and grow with a patient would provide a more clinically beneficial option than current inert replacements. Bioartificial valves were produced by entrapping human dermal fibroblasts within a fibrin gel. Using a mold design that presents appropriate mechanical constraints to the cell-induced fibrin gel compaction, gross fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 135 10  شماره 

صفحات  -

تاریخ انتشار 2013